Equality Comparison for Unordered Containers ( Rev 1 )
نویسندگان
چکیده
Changes since last paper, n2944 ................................................................................................................ 1 Background ................................................................................................................................................ 2 Status Quo: Inconsistent and Incomplete ................................................................................................ 2 Document Conventions ............................................................................................................................. 3 Discussion .................................................................................................................................................. 3 Why do we need operator== for unordered containers? ................................................................ 3 How should we define operator== for unordered containers? ........................................................ 4 Wouldn’t operator== for unordered containers be slow? ............................................................... 5 Summary and Scope of Changes .............................................................................................................. 6 Proposed Wording .................................................................................................................................... 6 Acknowledgements ................................................................................................................................... 12 References ................................................................................................................................................ 12 Appendix: Reference Implementations .................................................................................................... 12
منابع مشابه
Equality Comparison for Unordered Containers
Background ................................................................................................................................................ 1 Status Quo: Inconsistent and Incomplete ................................................................................................ 2 Document Conventions ..................................................................................
متن کاملImplementation of BT-trees
This document presents the full implementation details of BT-trees, a highly efficient ordered map, and an evaluation which compares BT-trees with unordered maps. BTtrees are often much faster than other ordered maps, and have comparable performance to unordered map implementations. However, in benchmarks which favor unordered maps, BT-trees are not faster than the fastest unordered map impleme...
متن کاملLogical Foundations of Syllable Representations
• Differences in notation do not necessarily entail differences in the information encoded in a particular formalism. • Fonts are notationally equivalent, in the sense that cat and cat are the same word. • In contrast, there are meaningful differences between bracket types in mathematical notation: {1, 2} is an unordered set, while (1, 2) is an ordered pair. Research question: are different syl...
متن کاملTwo Kinds of Probabilistic Induction
Problems in probabilistic induction are of two general kinds. In the first, we have a linearly ordered sequence of symbols that must be extrapolated. In the second we want to extrapolate an unordered set of finite strings. A very general formal solution to the first kind of problem is well known and much work has been done in obtaining good approximations to it [LI 93, Ris 78, Ris 89, Sol 64a, ...
متن کاملHigher Arf Functions and Topology of the Moduli Space of Higher Spin Riemann Surfaces
We describe all connected components of the space of pairs (P, s), where P is a hyperbolic Riemann surface with finitely generated fundamental group and s is an m-spin structure on P . We prove that any connected component is homeomorphic to a quotient of R by a discrete group. Our method is based on a description of an m-spin structure by an m-Arf function, that is a map σ : π1(P, p) → Z/mZ wi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009